000 01979cam a22003858i 4500
001 22992132
003 OSt
005 20231227124154.0
008 230228s2023 enk b 001 0 eng
010 _a 2023002178
020 _a9781009098502 (hardback)
040 _aDLC
_beng
_erda
_cDLC
042 _apcc
082 0 0 _a001.422
100 1 _aPressé, Steve,
_eauthor.
245 1 0 _aData modeling for the sciences :
_bapplications, basics, computations /
_cSteve Pressé, Ioannis Sgouralis.
263 _a2306
264 1 _aCambridge ;
_aNew York, NY :
_bCambridge University Press,
_c©2023.
300 _axii, 415 pages
_c25 cm.
336 _atext
_btxt
_2rdacontent
337 _aunmediated
_bn
_2rdamedia
338 _avolume
_bnc
_2rdacarrier
504 _aIncludes bibliographical references and index.
505 0 _aProbabilistic modeling and inference -- Dynamical systems and Markov processes -- Likelihoods and latent variables -- Bayesian inference -- Computational inference -- Regression models -- Mixture models -- Hidden Markov models -- State-space models -- Continuous time models.
520 _a"This accessible guide to data modeling introduces basic probabilistic concepts, gradually building toward state-of-the art data modeling and analysis techniques. Aimed at students and researchers in the sciences, the text is self-contained and pedagogical, including practical examples and end of chapter problems"--
_cProvided by publisher.
650 0 _aResearch
_xStatistical methods.
650 0 _aScience
_xStatistical methods.
650 0 _aProbabilities.
650 0 _aMathematical statistics.
700 1 _aSgouralis, Ioannis,
_eauthor.
776 0 8 _iOnline version:
_aPressé, Steve.
_tData modeling for the sciences
_dCambridge ; New York, nY : Cambridge University Press, 2023
_z9781009089555
_w(DLC) 2023002179
906 _a7
_bcbc
_corignew
_d1
_eecip
_f20
_gy-gencatlg
942 _2ddc
_cBK
_n0
999 _c484916
_d484916